The Andes Virus Nucleocapsid Protein Directs Basal Endothelial Cell Permeability by Activating RhoA
نویسندگان
چکیده
Andes virus (ANDV) predominantly infects microvascular endothelial cells (MECs) and nonlytically causes an acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). In HPS patients, virtually every pulmonary MEC is infected, MECs are enlarged, and infection results in vascular leakage and highly lethal pulmonary edema. We observed that MECs infected with the ANDV hantavirus or expressing the ANDV nucleocapsid (N) protein showed increased size and permeability by activating the Rheb and RhoA GTPases. Expression of ANDV N in MECs increased cell size by preventing tuberous sclerosis complex (TSC) repression of Rheb-mTOR-pS6K. N selectively bound the TSC2 N terminus (1 to 1403) within a complex containing TSC2/TSC1/TBC1D7, and endogenous TSC2 reciprocally coprecipitated N protein from ANDV-infected MECs. TSCs normally restrict RhoA-induced MEC permeability, and we found that ANDV infection or N protein expression constitutively activated RhoA. This suggests that the ANDV N protein alone is sufficient to activate signaling pathways that control MEC size and permeability. Further, RhoA small interfering RNA, dominant-negative RhoA(N19), and the RhoA/Rho kinase inhibitors fasudil and Y27632 dramatically reduced the permeability of ANDV-infected MECs by 80 to 90%. Fasudil also reduced the bradykinin-directed permeability of ANDV and Hantaan virus-infected MECs to control levels. These findings demonstrate that ANDV activation of RhoA causes MEC permeability and reveal a potential edemagenic mechanism for ANDV to constitutively inhibit the basal barrier integrity of infected MECs. The central importance of RhoA activation in MEC permeability further suggests therapeutically targeting RhoA, TSCs, and Rac1 as potential means of resolving capillary leakage during hantavirus infections. IMPORTANCE HPS is hallmarked by acute pulmonary edema, hypoxia, respiratory distress, and the ubiquitous infection of pulmonary MECs that occurs without disrupting the endothelium. Mechanisms of MEC permeability and targets for resolving lethal pulmonary edema during HPS remain enigmatic. Our findings suggest a novel underlying mechanism of MEC dysfunction resulting from ANDV activation of the Rheb and RhoA GTPases that, respectively, control MEC size and permeability. Our studies show that inhibition of RhoA blocks ANDV-directed permeability and implicate RhoA as a potential therapeutic target for restoring capillary barrier function to the ANDV-infected endothelium. Since RhoA activation forms a downstream nexus for factors that cause capillary leakage, blocking RhoA activation is liable to restore basal capillary integrity and prevent edema amplified by tissue hypoxia and respiratory distress. Targeting the endothelium has the potential to resolve disease during symptomatic stages, when replication inhibitors lack efficacy, and to be broadly applicable to other hemorrhagic and edematous viral diseases.
منابع مشابه
Cyclic AMP response element-binding protein prevents endothelial permeability increase through transcriptional controlling p190RhoGAP expression.
Increased endothelial permeability contributes to the morbidity and mortality associated with chronic inflammatory diseases, including acute lung injury. Cyclic AMP response element-binding protein (CREB) transcriptional factor induces genes that regulate inflammation and vascular remodeling. However, the role of CREB in regulating endothelial barrier function is unknown. Here, we demonstrate t...
متن کاملVEGFR2 and Src kinase inhibitors suppress Andes virus-induced endothelial cell permeability.
Hantaviruses predominantly infect human endothelial cells and, in the absence of cell lysis, cause two diseases resulting from increased vascular permeability. Andes virus (ANDV) causes a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). ANDV infection enhances the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF) by increas...
متن کاملPathogenic hantaviruses Andes virus and Hantaan virus induce adherens junction disassembly by directing vascular endothelial cadherin internalization in human endothelial cells.
Hantaviruses infect endothelial cells and cause 2 vascular permeability-based diseases. Pathogenic hantaviruses enhance the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF). However, the mechanism by which hantaviruses hyperpermeabilize endothelial cells has not been defined. The paracellular permeability of endothelial cells is uniquely determined by t...
متن کاملCALL FOR PAPERS Rho GTPases in Lung Physiology and Disease Barrier dysfunction and RhoA activation are blunted by homocysteine and adenosine in pulmonary endothelium
Harrington, Elizabeth O., Julie Newton, Nicole Morin, and Sharon Rounds. Barrier dysfunction and RhoA activation are blunted by homocysteine and adenosine in pulmonary endothelium. Am J Physiol Lung Cell Mol Physiol 287: L1091–L1097, 2004. First published July 30, 2004; doi:10.1152/ajplung.00421.2003.—RhoA GTPases modulate endothelial permeability. We have previously shown that adenosine and ho...
متن کاملIntermedin induces loss of coronary microvascular endothelial barrier via derangement of actin cytoskeleton: role of RhoA and Rac1.
AIMS Intermedin (IMD) is a novel member of the calcitonin gene-related peptide family, which acts via calcitonin receptor-like receptors (CLRs), mediating activation of cAMP signalling. The main objective of the present study was to analyse the molecular mechanisms of the differential effects of IMD on the macromolecule permeability of endothelial cells of different vascular beds. METHODS AND...
متن کامل